8086 memory segmentation

· The memory in an 8086/88 based system is organized as segmented memory.
· The CPU 8086 is able to address 1Mbyte of memory.
· The Complete physically available memory may be divided into a number of logical segments.
· The size of each segment is 64 KB
· A segment is an area that can begin at any location which is divisible by 16.
· A segment may be located any where in the memory
· The 4 segments are Code, Data, Extra and Stack segments.

· The 16 bit contents of the segment registers in the BIU actually point to the starting location of a particular segment.

· Segments may be overlapped or non-overlapped

· Each of these segments can be used for a specific function.
· Code segment is used for storing the instructions.
· The stack segment is used as a stack and it is used to store the return addresses and values of registers while transferring control between main program and subroutine.
· The data are used for storing data byte.
· Extra segment is used for storing string of bytes/words

{In the assembly language programming, more than one data/ code/ stack segments can be defined. But only one segment of each type can be accessed at any time. }
Advantages of Segmented memory Scheme
· Allows the memory capacity to be 1Mb although the actual addresses to be handled are of 16 bit size.
· Allows the placing of code, data and stack portions of the same program in different parts (segments) of the memory, for data and code protection.
· Perhaps the greatest advantage of segmented memory is that programs that reference logical addresses only can be loaded and run anywhere in memory. This is because the logical addresses always range from 0000h to FFFFh, independent of the code segment base. Such programs are said to be relocatable, meaning that they will run at any location in memory

· The segment registers are used to allow the instruction, data or stack portion of a program to be more than 64Kbytes long. The above can be achieved by using more than one code, data or stack segments.
· Segmentation facilitates multiprogramming

To define the position of memory segments, 8086/88 has 4 segments registers
· Code Segment register (CS), Data Segment register (DS), Extra Segment register (ES) and Stack Segment (SS) register.
· All are 16 bit registers.
· Each of the Segment registers store the upper 16 bit address of the starting address of the corresponding segments.

[image: image1.emf]25

34BA44EB54EB695E

CSRDSRESRSSRSegment Registers

BIU

CODE (64k)DATA (64K)EXTRA (64K)STACK (64K)1 MB0000034BA044B9F44EB054EAF54EB064EAF695E0795DF

Each segment register store the upper 16 bit of the starting address of the segments

MEMORY

LOGICAL AND PHYSICAL ADDRESS

· Addresses within a segment can range from address 00000h to address 0FFFFh. This corresponds to the 64K-byte length of the segment. An address within a segment is called an offset or logical address. A logical address gives the displacement from the address base of the segment to the desired location within it, as opposed to its "real" address, which maps directly anywhere into the 1 MB memory space. This "real" address is called the physical address.

· The difference between the physical and the logical address is that the physical address is 20 bits long and corresponds to the actual binary code output by the BIU on the address bus lines. The logical address is an offset from location 0 of a given segment.

[image: image2.jpg]
· When two segments overlap it is certainly possible for two different logical addresses to map to the same physical address. This can have disastrous results when the data begins to overwrite the subroutine stack area, or vice versa. For this reason one must be very careful when segments are allowed to overlap.

· To specify the logical address XXXX in the stack segment, use the convention
 SS: [XXXX], which is equal to [SS] * 16 + XXXX.

Offset registers (16 bit registers) are specified below

IP – Instruction pointer

SP – stack pointer

BP – base pointer

SI – source index

DI – destination index

BX – one of the general purpose registers

20 bit physical address is generated by combination and segment register and offset register
· CS:IP(for accessing instruction bytes)
· SS:SP(for storing and retrieving return address and register values while transferring control from main program to subroutine)

· SS:BP(for accessing stack randomly)
· DS:BX (for general data access)

· DS:SI (for string and non string operations)
· DS:DI (for other than string operations)

· ES:DI (for string operations)

An example to explain segment register and offset register functioning
· The instruction pointer register contains a 16-bit offset address of instruction that is to be executed next.
· The IP always references the Code segment register (CS).
· The value contained in the instruction pointer is called as an offset because this value must be added to the base address of the code segment, which is available in the CS register to find the 20-bit physical address.
· The value of the instruction pointer is incremented after executing every instruction.
· To form a 20bit address of the next instruction, the 16 bit address of the IP is added (by the address summing block) to the address contained in the CS , which has been shifted four bits to the left.

[image: image3.emf]28

•The following examples shows the CS:IP scheme of address formation:

Inserting a hexadecimal 0H (0000B)with the CSR or shifting the CSRfour binary digits left

3 4 B A 0(C S) +8 A B 4 (I P)3 D 6 5 4 (next address)

34BA8AB4CSIP34BA03D64544B9F

Code segment

8AB4 (offset)

[image: image4.jpg]
25

		34BA

		44EB

		54EB

		695E

CSR

DSR

ESR

SSR

Segment Registers

BIU

CODE (64k)

DATA (64K)

EXTRA (64K)

STACK (64K)

1 MB

00000

34BA0

44B9F

44EB0

54EAF

54EB0

64EAF

695E0

795DF

Each segment register store the upper 16 bit of the starting address of the segments

MEMORY

image1.jpeg

28

The following examples shows the CS:IP scheme of address formation:

Inserting a hexadecimal 0H (0000B)

 with the CSR or shifting the CSR

four binary digits left

3 4 B A 0 (C S) +

8 A B 4 (I P)

 3 D 6 5 4 (next address)

34BA

8AB4

CS

IP

34BA0

3D645

44B9F

Code segment

8AB4 (offset)

image1.jpeg

