8086 pipelined architecture

FETCH AND EXECUTE (how does pipelining works?)
8086 Organization of the CPU into a separate BIU and EU allows the fetch and execute cycles to overlap. Following steps are taken when 8086 or 8088 is first started. 

1) The BIU outputs the contents of the instruction pointer register (IP) onto the address bus, causing the selected byte or word to be read into the BIU. 
2) Register IP is incremented by 1 to prepare for the next instruction fetch. 
3) Once inside the BIU, the instruction is passed to the queue. This is a first-in, first-out storage register called as a "pipeline". 
4) Assuming that the queue is initially empty, the EU immediately draws this instruction from the queue and begins execution. 
5) While the EU is executing this instruction, the BIU proceeds to fetch a new instruction. Depending on the execution time of the first instruction, the BIU may fill the queue with several new instructions before the EU is ready to draw its next instruction. 
6) The BIU is programmed to fetch a new instruction whenever the queue has room for one (with the 8088) or two (with the 8086) additional bytes. The advantage of this pipelined architecture is that the EU can execute instructions almost continually instead of having to wait for the BIU to fetch a new instruction. (this feature is introduced to improve speed)
[image: image1.png]
There are three conditions that will cause the EU to enter a "wait" mode. 
· The first occurs in the beginning when BIU is just starting to fetch instructions.

· The second occurs when an instruction requires access to a memory location not in the queue. The BIU must suspend fetching instructions and output the address of this memory location. After waiting for the memory access, the EU can resume executing instruction codes from the queue (and the BIU can resume filling the queue). 

· The third condition occurs when the instruction to be executed is a "jump" instruction. In this case control is to be transferred to a new (non sequential) address. The queue, however, assumes that instructions will always be executed in sequence and thus will be holding the "wrong" instruction codes. The EU must wait while the instruction at the jump address is fetched. Note that any bytes presently in the queue must be discarded (they are overwritten). 

One other condition can cause the BIU to suspend fetching instructions. 
· This occurs during execution of instructions that are slow to execute. For example, the instruction AAM (ASCII Adjust for Multiplication) requires 83 clock cycles to complete. At four cycles per instruction fetch, the queue will be completely filled during the execution of this single instruction. The BIU will thus have to wait for the EU to pull over one or two bytes from the queue before resuming the fetch cycle. 

(A subtle advantage to the pipelined architecture should be mentioned. Because the next several instructions are usually in the queue, the BIU can access memory at a somewhat "leisurely" pace. This means that slow-memory parts can be used without affecting overall system performance.) 

[image: image2.jpg]
[image: image3.jpg]
[image: image4.jpg]
[image: image5.jpg]
